

Lecture 12 More on the SVD

Mathématiques appliquées (MATH0504-1)
B. Dewals, Ch. Geuzaine

Reminder

The image of the unit sphere S under any $m \times n$ matrix is a hyperellipse.

Reminder

In \mathbb{R}^{m}, a hyperellipse is a surface obtained by

- stretching the unit sphere in \mathbb{R}^{m}
- by some factors $\sigma_{1}, \ldots, \sigma_{m}$
- in some orthonormal directions $u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}$

The vectors $\left\{\sigma_{i} u_{i}\right\}$ are the principal semiaxes of the hyperellipse:
$\sigma_{1}, \ldots, \sigma_{n}$ are the singular values
u_{1}, \ldots, u_{m} are the (left) singular vectors

Reminder

Given $A \in \mathbb{C}^{m \times n}$, not necessarily of full rank, the SVD decomposition of A is a factorization

$$
A=U \Sigma V^{*}
$$

where

Learning objectives

Understand the SVD as a change of bases, and relate it to the eigenvalue decomposition

Study matrix properties via the SVD
Understand the principle of low-rank approximations

$\sim 1 \%$

$\sim 14 \%$

Full HD

(Lecture 5 in Trefethen \& Bau, 1997)

Change of bases

The SVD makes it possible to view any matrix A as a diagonal matrix... provided that we use proper bases for the domain and range spaces

Consider $b=A x$
Let us

- expand b in the basis of the left singular vectors of A (the columns of U)
- Expand x in the basis of the right singular vectors of A (the columns of V)

Change of bases

In these new bases, we have

$$
\begin{aligned}
& b=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{m}
\end{array}\right] b^{\prime}=U b^{\prime} \\
& x=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right] x^{\prime}=V x^{\prime}
\end{aligned}
$$

and thus $b^{\prime}=U^{*} b$ and $x^{\prime}=V^{*} x$.
Thus:
$b=A x \Longleftrightarrow U^{*} b=U^{*} A x=U^{*} U \Sigma V^{*} x=\Sigma V^{*} x$
i.e. $b^{\prime}=\Sigma x^{\prime}$

Change of bases

Thus any matrix A reduces to the diagonal matrix Σ when

- the range is expressed in the basis of columns of U
- the domain is expressed in the basis of the columns of V

Eigenvalue decomposition

If a square matrix $A \in \mathbb{C}^{m \times m}$ possesses linearly independent eigenvectors, the eigenvalue decomposition of A is

$$
A=X \Lambda X^{-1}
$$

where

- the columns of X are the eigenvectors
- $\quad \Lambda$ is an $m \times m$ diagonal matrix whose entries are the eigenvalues of A

Eigenvalue decomposition

If similarly as before we now expand b and x (in $b=A x$) in the basis of the eigenvectors, then the new vectors

$$
b^{\prime}=X^{-1} b, \quad x^{\prime}=X^{-1} x
$$

satisfy $b^{\prime}=\Lambda x^{\prime}$.
What are the differences with the SVD?

- SVD uses two bases instead of one (the eigenvectors)
- SVD uses orthonormal bases (while eigenvectors are in general not orthogonal)
- All matrices (even rectangular) have an SVD!

(Lecture 5 in Trefethen \& Bau, 1997)

Rank

Let r be the number of nonzero singular values.
Then $\operatorname{rank}(A)=r$.
Indeed:

- the rank of a diagonal matrix is the number of its nonzero entries;
- since U and V have full rank, we have

$$
\operatorname{rank}(A)=\underbrace{\operatorname{rank}\left(U \Sigma V^{*}\right)=\operatorname{rank}(\Sigma)}_{\text {This is shown in the next slide }}=r
$$

Rank: demonstration

Reminder: $\operatorname{rank}(A B) \leq \min [\operatorname{rank}(A), \operatorname{rank}(B)]$
$\operatorname{rank}\left(U \Sigma V^{*}\right) \leq \min \left[\operatorname{rank}(U), \operatorname{rank}(\Sigma), \operatorname{rank}\left(V^{*}\right)\right]$

$$
\begin{equation*}
=\min [m, \operatorname{rank}(\Sigma), n]=\operatorname{rank}(\Sigma) \tag{1}
\end{equation*}
$$

$\operatorname{rank}(\Sigma)=\operatorname{rank}(I \Sigma I)=\operatorname{rank}\left(U^{*} U \Sigma V^{*} V\right)$

$$
\begin{aligned}
& \leq \min \left[\operatorname{rank}\left(U^{*}\right), \operatorname{rank}\left(U \Sigma V^{*}\right), \operatorname{rank}(V)\right] \\
& =\min \left[m, \operatorname{rank}\left(U \Sigma V^{*}\right), n\right]=\operatorname{rank}\left(U \Sigma V^{*}\right)(2
\end{aligned}
$$

(2) $\rightarrow \operatorname{rank}\left(U \Sigma V^{*}\right)=\operatorname{rank}(\Sigma)$

Norm

The 2-norm of the matrix is equal to the first (largest) singular value: $\|A\|_{2}=\sigma_{1}$

We established this last week in the existence proof (from the geometric interpretation of SVD)!
More quickly, since $A=U \Sigma V^{*}$ with unitary U and V, we have

$$
\|A\|_{2}=\left\|U \Sigma V^{*}\right\|_{2}=\|\Sigma\|_{2}=\max _{j}\left|\sigma_{j}\right|=\sigma_{1}
$$

This is shown in the next four slides

Norm: demonstration

Consider a unitary matrix U.
We proceed in four steps.

Step 1

First, let's show that $\|U x\|_{2}=\|x\|_{2}$:

$$
\|U x\|_{2}^{2}=(U x)^{*}(U x)=x^{*} \underbrace{U^{*} U}_{I} x=x^{*} x=\|x\|_{2}^{2}
$$

Norm: demonstration (cont'd)

Reminder: $\|A\|_{2}=\max _{\|x\|_{2}=1}\|A x\|_{2}$
Step 2 We demonstrate that $\|U M\|_{2} \leq\|M\|_{2}$
a) Consider a vector x with $\|x\|_{2}=1$, such that:

$$
\|U M x\|_{2}=\|U M\|_{2}
$$

b) Let's evaluate the norm of $U M$:

$$
\|U M\|_{2}=\|U M x\|_{2}=\|U(M x)\|_{2}=\|M x\|_{2}
$$

$$
\|A B\|_{2} \leq\|A\|_{2}\|B\|_{2}
$$

Norm: demonstration (cont'd)

Reminder: $\|A\|_{2}=\max _{\|x\|_{2}=1}\|A x\|_{2}$
Step 3 We demonstrate that $\|M\|_{2} \leq\|U M\|_{2}$
a) Consider a vector y with $\|y\|_{2}=1$, such that:

$$
\|M y\|_{2}=\|M\|_{2}
$$

b) Let's evaluate the norm of M :

$$
\|M\|_{2}=\|M y\|_{2} \stackrel{\overparen{=}\|U(M y)\|_{2}=\|(U M) y\|_{2}}{ }
$$

$$
\|A B\|_{2} \leq\|A\|_{2}\|B\|_{2} \leq\|U M\|_{2}\|y\|_{2}=\|U M\|_{2}
$$

Norm: demonstration (cont'd)

Step 4

From Step 2, we have:

$$
\|U M\|_{2} \leq\|M\|_{2}
$$

From Step 3, we have:

$$
\|M\|_{2} \leq\|M M\|_{2}
$$

Hence,

$$
\|U M\|_{2}=\|M\|_{2}
$$

Eigenvalues

The nonzero singular values of A are the square roots of the nonzero eigenvalues of $A^{*} A$ or $A A^{*}$

Proof: from
$A^{*} A=\left(U \Sigma V^{*}\right)^{*}\left(U \Sigma V^{*}\right)=V \Sigma^{*} U^{*} U \Sigma V^{*}=V\left(\Sigma^{*} \Sigma\right) V^{*}$ we see that $A^{*} A$ and $\Sigma^{*} \Sigma$ are similar.

Hence, they have the same eigenvalues $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{p}^{2}$ with $n-p$ additional zero eigenvalues if $n>p$.

Note that the left (resp. right) singular vectors are eigenvectors of $A A^{*}\left(\right.$ resp. $\left.A^{*} A\right)$.

Two matrices A and B are similar if, for some

 invertible matrix P, we have $B=P^{-1} A P$Similar matrices have the same eigenvalues.
Indeed, if v is an eigenvector of A with eigenvalue λ, $P^{-1} v$ is an eigenvector of B with the same eigenvalue λ :

$$
\begin{aligned}
A v & =\lambda v \\
P B P^{-1} v & =\lambda v \\
B \underbrace{P^{-1} v} & =\lambda \underbrace{P^{-1} v} v
\end{aligned}
$$

So, every eigenvalue of A is an eigenvalue of B, and conversely since one can interchange A and B.

Eigenvalues

If $A^{*}=A$, then the singular values of A are the absolute values of the eigenvalues of A.

Proof Reminder: a Hermitian matrix has

- a full set of orthogonal eigenvectors,
- and all its eigenvalues are real,
so that its eigenvalue decomposition can be written $A=Q \Lambda Q^{*}$, with Q unitary and Λ diagonal and real.

Let $|\Lambda|$ and $\operatorname{sign}(\Lambda)$ denote the diagonal matrices with entries $\left|\lambda_{i}\right|$ and $\operatorname{sign}\left(\lambda_{i}\right)$, respectively.

Eigenvalues

We can then write

$$
A=Q \Lambda Q^{*}=Q|\Lambda| \operatorname{sign}(\Lambda) Q^{*}=Q|\Lambda| W^{*}
$$

since $\operatorname{sign}(\Lambda) Q^{*}$ is unitary if Q^{*} is unitary.
Inserting permutation matrices (i.e., square matrices that have exactly one entry of 1 in each row and each column and Os elsewhere) as factors of Q and W^{*} to reorder the entries of $|\Lambda|$ in nonincreasing order, this is an SVD of A, with the singular values equal to the diagonal entries of $|\Lambda|$, i.e., the absolute values of the eigenvalues.

(Lecture 5 in Trefethen \& Bau, 1997)

Sum of rank-one matrices

Thanks to the SVD we can express A as the sum of r rank-one matrices:

$$
A=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{*}
$$

There are many other ways to express a matrix as a sum of rank-one matrices (e.g. simply as the sum of its rows, or its columns, etc.).

But using the SVD leads to an approximation with a remarkable property: the k-th partial sum captures as much "energy" of A as possible.

Low-rank approximation

For any $k \leq r$, define the partial sum

$$
A_{k}=\sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{*}
$$

Then $\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}=\min _{\operatorname{rank}(B)=k}\|A-B\|_{2}$

This tells us that the "best" rank- k approximation of a matrix is obtained by the k-th partial sum A_{k} !

This has numerous applications, from image compression to the approximation of PDEs.

Low-rank approximation: proof

(1) Since $A_{k}=U \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}, 0, \ldots, 0\right) V^{*}, \operatorname{rank}\left(A_{k}\right)=k$ and we have $A-A_{k}=U \operatorname{diag}\left(0, \ldots, 0, \sigma_{k+1}, \ldots, \sigma_{r}\right) V^{*}$.
Thus $\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}$.
(2) a Suppose that there exists $B \in \mathbb{C}^{m \times n}$, such that $\operatorname{rank}(B)=k$ and $\|A-B\|_{2}<\sigma_{k+1}$.

Then we can find orthonormal vectors w_{1}, \ldots, w_{n-k} in \mathbb{C}^{n} such that $\operatorname{null}(B)=\left\langle w_{1}, \ldots, w_{n-k}\right\rangle$.
For all $w \in\left\langle w_{1}, \ldots, w_{n-k}\right\rangle$ we then have $B w=0$, $(A-B) w=A w$, and

$$
\|A w\|_{2}=\|(A-B) w\|_{2} \leq\|A-B\|_{2}\|w\|_{2}<\sigma_{k+1}\|w\|_{2}
$$

Low-rank approximation: proof

(2) b However there is another subspace of \mathbb{C}^{n} for which $\|A w\|_{2} \geq \sigma_{k+1}\|w\|_{2}$: the one spanned by the $k+1$ first right singular vectors: $\left\langle v_{1}, \ldots, v_{k+1}\right\rangle$. Indeed: for $w \in\left\langle v_{1}, \ldots, v_{k+1}\right\rangle$, i.e. $w=\sum_{i=1}^{k+1} c_{i} v_{i}$ and $A w=\sum_{i=1}^{k+1} \sigma_{i} c_{i} u_{i}$, we have

$$
\begin{gathered}
\|w\|_{2}^{2}=\sum_{i=1}^{k+1} c_{i}^{2} \\
\|A w\|_{2}^{2}=\sum_{i=1}^{k+1} \sigma_{i}^{2} c_{i}^{2} \geq \sigma_{k+1}^{2} \sum_{i=1}^{k+1} c_{i}^{2}
\end{gathered}
$$

Low-rank approximation: proof

(2) c We thus have:

$$
\begin{aligned}
& \|A w\|_{2}<\sigma_{k+1}\|w\|_{2}, \forall w \in\left\langle w_{1}, \ldots, w_{n-k}\right\rangle \\
& \|A w\|_{2} \geq \sigma_{k+1}\|w\|_{2}, \forall w \in\left\langle v_{1}, \ldots, v_{k+1}\right\rangle
\end{aligned}
$$

But these two subspaces of \mathbb{C}^{n} must have a nonzero intersection, as the sum of their dimensions is: $(n-k)+(k+1)=n+1>n$.

This a contradiction and, therefore, there cannot exist a matrix B such that $\|A-B\|_{2}<\sigma_{k+1}$.

The best low-rank approximation in 2-norm is thus

$$
A_{k}=\sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{*} \quad!
$$

Take-home messages

Every matrix is diagonal if the range is expressed in the basis of columns of U and the domain is expressed in the basis of the columns of V

Compared to the eigenvalue decomposition:

- two orthonormal bases (instead of one: the eigenvectors)
- applicable to non-square matrices
- non-zero singular values of A are the square roots of the eigenvalues of $A^{*} A$
- if $A^{*}=A$, the singular values of A are the absolute values of the eigenvalues of A

The SVD allows finding the best low-rank approximation of A.

Thank you!

