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Numerical solutions of PDEs

We have found simple formulas for solutions to 
some first and second order PDEs, but the 
solution of many PDEs cannot be written simply

Even when there is a formula, it might be so 
complicated that we would prefer to visualize 
a typical solution by looking at its graph

Let us start investigating if we can reduce the 
process of solving a PDE with its auxiliary 
conditions to a finite number of arithmetic 
calculations that can be carried out by computer
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Numerical solutions of PDEs

There are dangers in doing so:
• If the numerical method is not carefully designed, 

the computed solution may substantially differ
from the actual one.

• For difficult problems the computation could easily 
take so long (years…) that it would not be tractable

Two well known numerical methods are Finite 
Difference (FD) and Finite Element (FE): we will 
introduce both.
Finite Volume (FV) is another numerical method, 
widely used in fluid flow computations.
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Learning objectives

Review elementary finite difference (FD) schemes

Become aware of the existence of stability 
conditions for the design of numerical schemes

Derive formally the stability condition for 
the 1D diffusion equation

Understand the concepts of amplification factor, 
and stable / unstable modes

Discover that numerical schemes may be unstable, 
conditionally stable or unconditionally stable
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Outline

1. Review of Finite Difference Schemes

2. Application to the Diffusion Equation

3. Numerical experiments

4. Derivation of a stability criterion for an explicit 
discretization of the 1D diffusion equation

5. Crank-Nicholson scheme



1 – Review of Finite Difference Schemes
In this section we review the basics of finite difference numerical
schemes.
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Finite differences

Finite difference schemes consist in replacing each 
derivative by a difference quotient.

Consider a function u(x) of one variable. 

Choose a mesh size Dx.

Approximate the value               for                  
by a number uj indexed by an integer j:
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Approximations for the first derivative

The three standard approximations for the first 

derivative                 are



9

Approximations for the first derivative

Each of them is a correct approximation, as shown 
by a Taylor expansion (assuming u is a C4 function): 

Replacing  Dx by  Dx , we get

We deduce that

Taking x = j Dx
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Approximations for the first derivative

Similarly for all three standard approximations:

Taking                   we see that backward and 
forward differences are correct approximations to 
the order ; and centered differences is a 
correct approximation to the order 

Backward difference

Forward difference

Centred difference
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Approximations for the second derivative

The simplest approximation for the second 
derivative is the

which is justified by the same Taylor expansions as 
used before, which when added give:

Centered second difference is thus valid with an 
error of
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Functions of two variables

For a function of 2 variables u(x,t), we choose a 
mesh size for both variables:

The forward difference approximations of the first 
order partial derivatives are then for example
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Two types of errors are generally introduced 
in computations based on such approximations

Truncation errors refers to the error introduced in 
the solutions by the approximations themselves, 
that is, the O(Dx) terms

• local truncation error: on one term

• global truncation error: on the actual solution, 
combining all local contributions

Round off errors occurs in a real computation 
because only a certain number of digits, 
typically 8 or 16, are retained by the computer 
at each step of the computation







2 – Application to the Diffusion Equation
In this section we apply the finite difference method to the 1D 
diffusion equation.
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Difference equation for Diffusion

Let us solve

with a forward difference for ut and a centered 
difference for uxx. 

We obtain the following difference equation:

The local truncation error is            for the left-hand 
side and              for the right-hand side.
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Difference equation for Diffusion

Let us choose a very small Dx and Dt = (Dx)2. 

This leads to the simplified equation:

Consider the following initial data f(x)

approximated by the following fj :
0 0 0 0 1 0 0 0 0 0 → x

1
1 1

n n n n
j j j ju u u u

   
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Difference equation for Diffusion

Applying the scheme we obtain:

This is clearly not correct: the initial data gets amplified 
and oscillates – which is not expected for diffusion! 

Indeed, the maximum principle tells us that the true 
solution is bounded by the minimum and maximum 
values in the initial condition (0 and 1 here) .
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Difference equation for Diffusion

We should analyse this, because we see that small 
truncation errors do not guarantee that the 
solution will be close to the true solution!



3 – Numerical experiments
In this section we perform some numerical experiments to highlight 
the influence of the choice of the time step (with respect to the grid 
spacing) on the stability of the computation.
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Let us have another try!

We again use a forward difference for ut and a centered 
difference for uxx . In contrast with the first attempt, 
though, we do not specify yet the choice of the time 
step Dt and the mesh size Dx.

We introduce the following notation:

The difference equation 

becomes
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Explicit vs. implicit numerical schemes

The scheme

is said to be explicit because the values at time step 
n + 1 are given explicitly in terms of the values 
at the earlier times.

In contrast, one example of an implicit scheme 
would write:

 

1 1 1 1
1 1

2

2n n n n n
j j j j ju u u u u

t x

   
   


D D
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Explicit vs. implicit numerical schemes

A scheme may also be (semi-)implicit, such as:

where q is a parameter usually set between 0 an 1.

Opting for such a scheme generally improves the 
stability of the scheme; but it requires the 
resolution of (large) systems of algebraic equations.

The value of q may be chosen to enhance the 
scheme accuracy. We will come back to this later.

 
   

1 1 1 1
1 1 1 1

2 2

2 2
1

n n n n n n n n
j j j j j j j ju u u u u u u u

t x x
q q

   
       

  
D D D
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Now, let us use the explicit scheme to solve with 
Matlab a standard diffusion problem

The explicit scheme writes:

Consider the following standard problem:
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Now, let us use the explicit scheme to solve with 
Matlab a standard diffusion problem

First, discretize in space the 1D domain (0, p ), with 
a grid of J + 1 nodes and a spacing Dx = p / J.

The discrete boundary and initial conditions are

and

with

Dx = p / J

x = px = 0
j = Jj = 0
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Hands on: launch Matlab or Python 
and examine how the computation behaves…

① Create the domain 

Consider J = 20

x_start = 0; x_end = pi; J = 20;

dx = (x_end - x_start) / J;

X = [x_start:dx:x_end];

Dx = p / J

x = px = 0
j = Jj = 0
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Hands on: launch Matlab or Python 
and examine how the computation behaves…

import numpy as np
import matplotlib.pyplot as plt
x_start = 0.0
x_end = np.pi
J = np.uint32(20)
dx = (x_end-x_start)/J
X = np.arange(x_start,x_end+dx, dx)

Dx = p / J

x = px = 0
j = Jj = 0
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Hands on: launch Matlab or Python 
and examine how the computation behaves…

② You will compute the solution for t = p 2 / 25
by considering s = Dt / (Dx)2 = 0.4.

t_end = pi^2 / 25;

s = 0.4;

dt = s * dx^2;

t_end = np.pi**2 / 25
s = 0.4
dt = s * dx**2
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Hands on: launch Matlab or Python 
and examine how the computation behaves…

③ Initialize a matrix to store the solution:

N = uint32(t_end / dt);

U = zeros(N+1, J+1);

N = np.uint32(t_end/dt)
U = np.zeros((N+1, J+1))
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Hands on: launch Matlab or Python 
and examine how the computation behaves…

④ Prescribe the initial condition …

II = find(X < pi/2); 

U(1, II) = X(II);

II = find(X >= pi/2); 

U(1, II) = pi - X(II);

II = np.argwhere(X<np.pi/2)
U[0,II] = X[II]
II = np.argwhere(X>=np.pi/2)
U[0, II] = np.pi - X[II]
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Hands on: launch Matlab or Python 
and examine how the computation behaves…

⑤ … and the boundary conditions

U(:, 1) = 0;

U(:, end) = 0;

U[:,0] = 0.0
U[:, -1] = 0.0
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Hands on: launch Matlab or Python 
and examine how the computation behaves…

⑥ Now, you are ready for your first numerical
resolution of a PDE:
for n = 1:N

U(n+1, 2:end-1) … 

= s*(U(n, 3:end) + U(n, 1:end-2))…

+ (1-2*s) * U(n, 2:end-1);

End

How does the result look like?

for n in range(N):
U[n+1, 1:-1] = s*(U[n,2:] + U[n,0:-2]) \

+ (1-2*s) * U[n, 1:-1]
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Hands on: launch Matlab or Python 
and examine how the computation behaves…

s = 0.46
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Hands on: launch Matlab or Python 
and examine how the computation behaves…

s = 0.54



4 – Derivation of a stability criterion
In this section, we derive a theoretical stability criterion for an explicit 
discretization of the 1D diffusion wave equation. The theoretical 
criterion agrees very well with the observations made in the 
numerical experiments described in the previous section.
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A stability criterion can be formally derived

Heuristically, we find that the computation remains 
stable provided that s < 1/2.

A hint on this can be found in the discretized 
equation

where the coefficient 1 − 2 s becomes negative for 
s > 1/2.

Let us demonstrate now the stability condition

s < 1/2.

We proceed in six simple steps.
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① Separate the variables in the difference equation

We look for solutions of the difference equation

of the form

,

with Xj a function of space only (x = j Dx), and

Tn a function of time only (t = n Dt).

Substituting in the difference equation, we get

j
n
j nu X T

   1 1 1 1 2j j n j jn n nX X XsT sT XT T     
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① Separate the variables in the difference equation

The difference equation may be rewritten as

The left-hand side (LHS) and the right-hand side 
(RHS) of this equation are functions of independent 
variables (respectively n and j).

Therefore, the equality may hold only if each side
is a constant independent of n and j.

We note this constant x.

1 1 11 2n

n

j j

j

s s
X X

T X

T  
  1 1 11 2n

n

j j

j

X
s s n

T X

XT
x 

    , j 
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② Solve the time equation

From

we get

The factor x plays a major part in the assessment 
of the stability of numerical schemes.

It is called the amplification factor.

1n

n

T

T
x 

0nT T 0
n

nT Tx
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③ Solve the spatial equation

The difference equation

may be rewritten

This is a discretized form of a second-order ODE, 
which has sine and cosine solutions.

Therefore, we guess solutions of the form

with A, B arbitrary constants and q to be determined.

1 11 2 j j

j

s
X

X
s

X
x 

  

   1 12 1 0j j j js X X X Xx     

cos sinjX A j B jq q 
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④ Prescribe the boundary conditions

The boundary conditions of the problem were 
formulated as

Setting X0 = 0 at j = 0 implies that A = 0.

We can freely set B = 1, so that Xj becomes

Dx = p / J

x = px = 0
j = Jj = 0

0 0n n
Ju u 

cos sinjX A j B jq q  sinjX jq
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④ Prescribe the boundary conditions

The boundary conditions of the problem were 
formulated as

Setting XJ = 0 at j = J implies that sin Jq = 0.

Thus, Jq = k p , with k an integer (wave number).

Combining with J = p / Dx leads to q = k Dx, and 

Dx = p / J

x = px = 0
j = Jj = 0

0 0n n
Ju u 

 sinjX j xk D
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⑤ Determine x from the spatial equation

Let us substitute Xj = sin ( j k Dx ) into the spatial 
equation

It leads to

or

Hence,

1 11 2 j j

j

X X
s s

X
x 

  

   
 

sin 1 sin 1
1 2

sin

j k x j k x
s s

jk x
x

 D   D        
D

   
 

2sin cos
1 2

sin

jk x k x
s s

jk x
x

D D
  

D

   1 2 1 cosk s k xx x    D  
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⑥ Discuss the value of x as a function of s

We know from the solution of the time equation

that |x k| must remain below 1; otherwise
• the numerical solution would amplify with time, 

and we have no chance to get a stable solution
• we have no chance that the numerical solution 

converges towards the true solution 
u(x,t) → 0      for t = n Dt → ∞.

Therefore let us look at the condition(s) to be 
prescribed on s so that |x | remains below 1 for all k.

0
n

nT Tx
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⑥ Discuss the value of x as a function of s

Since the factor 1 − cos(kDx) in

varies between 0 and 2, we have

1 – 4 s ≤ x k ≤ 1.

So, stability requires that 1 – 4 s ≥ – 1, hence

This is the condition required for stability 
of the computation!

2

1

2

t
s

x

D
 

D

   1 2 1 cosk s k xx x    D  
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Which is the most unstable mode?

The analysis above shows that the “most dangerous” 
mode is the mode for which x(k) = − 1.

From

we can infer that this “most dangerous” mode 
corresponds to cos(k Dx) = − 1.

The corresponding wave number k is

which is a fairly high wave number.

k
x

p


D

   1 2 1 cosk s k xx x    D  
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Which is the most unstable mode?

This theoretical result is, again, fully consistent with 
the observations in the “failed” computation.

s = 0.54
Period of the 
“most dangerous” 
mode according 
to theory
 2p / k 
= 2p / (p / Dx) 
= 2 Dx
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Looking back at what we just did…

From the difference equation

we could have been obtained

by simply substituting into the difference equation 
an exponential mode of the form:

   1 2 1 cosk s k xx x    D  

1 11 2 j j

j

X X
s s

X
x 

  

  jik x
jX e D
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Looking back at what we just did…

So, in summary, what we did was to plug the 
separated solution mode

into the scheme and look for which values of

we have the amplification factor |x k| ≤ 1.

   
j nn ik x

ju e kxD   



5 – Crank-Nicholson scheme
In this section we analyse a different numerical scheme that exhibits 
unconditional stability
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Implication for engineering

The stability criterion 

for the explicit scheme means that in practice the 
time steps must be taken very short.

Particularly, for the numerical scheme considered 
so far, Dt scales with the square of Dx!

Let us investigate whether a slightly different 
scheme may lead to a less restrictive stability 
condition … or even no stability condition at all.

2

1

2

t
s

x

D
 

D
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Crank-Nicolson scheme

Let us come back to the (semi-)implicit scheme 
introduced earlier

with q a number between 0 and 1.

If q = 0, it reduces to the previous explicit scheme.

Otherwise, it is implicit since un+1 appears on both 
sides of the equation. This means that, at each 
time step, a system of linear algebraic equations 
must be solved.

 
   

1 1 1 1
1 1 1 1

2 2

2 2
1

n n n n n n n n
j j j j j j j ju u u u u u u u

t x x
q q

   
       

  
D D D
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Let us analyze the stability of the scheme

As before, we plug the separated solution

into the difference equation

It leads to

 
   

1 1 1 1
1 1 1 1

2 2

2 2
1

n n n n n n n n
j j j j j j j ju u u u u u u u

t x x
q q

   
       

  
D D D

   
j nn ik x

ju e kxD   

 
   2 2

1 2 2
1

ik x ik x ik x ik xe e e e

t x x

x q qx
D  D D  D    

  
D D D

     1 2 1 cos 1 2 cos 1k sx xs kx q x q   D   D       

 
   2 2

1 2 2
1

ik x ik x ik x ik xe e

t x

e e

x

x q qx
D  D D  D

D D

   
 

D



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Let us analyze the stability of the scheme

From

we get the following expression for x(k):

By examining this result, we find out that
• x(k) ≤ 1 is always true;
• while x(k) ≥ − 1 requires that:

     1 2 1 cos 1 2 cos 1s k x s k xx q x q   D   D       

   
 

1 2 1 1 cos

1 2 1 cos

s k x

s k x

q
x

q
   D  

  D  
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Let us analyze the stability of the scheme

If 1 − 2 q ≤ 0, the condition

is fulfilled whatever the value of s

This means that for q ≥ 1 / 2, the scheme is 
unconditionally stable.

The particular case of q = 1 / 2 is called the Crank-
Nicholson scheme. It is second-order accurate in Dt.

For q < 1 / 2, the stability condition writes:
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Take-home messages

We empirically observed a stability criterion, 
which we also demonstrated theoretically.

In a simple explicit discretization of the diffusion 
equation, the stability criterion requires that Dt has 
to scale with Dx², which may be very restrictive.

In contrast, implicit schemes (like the Crank-
Nicholson scheme) can be unconditionally stable.

What’s next We will derive a general stability criterion 
for linear PDEs – the Von Neumann 
criterion – which applies systematically.


