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Learning objectives of this lecture

Understand the notion of “well-posed” problem, 
together with the concepts of boundary and/or 
initial conditions

Recognize the main families of 

• 2nd-order PDEs

• systems of 1st-order PDEs
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Reminder
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What is a PDE? What is the order of a PDE?

A PDE is an identity that relates 
• independent variables (e.g. x, y, t …)
• to a dependent variable u, and its partial 

derivatives.

We will often denote the derivatives by subscripts, 
thus e.g. ux = ∂u/ ∂x.

The order of a PDE is the order of the highest
derivative which appears in the equation:
• E.g. 1st order:
• E.g. 2nd order:
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What is a linear PDE? When is it homogeneous?
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Let us write the PDE in the form ℒ (u) = g, 
where
• ℒ  is an operator 
• and g is a function of the independent variables 

(or zero).

A PDE is linear if

ℒ (u + v) = ℒ (u) + ℒ (v) and ℒ (c u) = c ℒ (u)

for any functions u and v, and any constant c.

Besides, it is homogeneous if g = 0, i.e. ℒ (u) = 0.

We will somehow generalize 
this later in this class
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1st order linear PDEs can be reformulated as ODEs; 
their solution is constant along characteristic curves

Consider the 1st order PDE

a(x, y) ux + b(x, y) uy = 0

where a(x, y) and b(x, y) are not both equal to 
zero.
It expresses actually a directional derivative of u. 
Hence, solving the PDE reduces to solving the ODE:

dy / dx = b(x, y) / a(x, y)

and the solution of the PDE is constant along the 
solution curves of this ODE, referred to as 
characteristic curves. 
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For a 1st order linear PDE with constant coefficients, 
the characteristic curves are straight lines

Consider the 1st order PDE

a ux + b uy = 0

where a and b are not both equal to zero.

The general solution 
of this PDE writes:

u(x, y) = f ( b x  a y )

with f any function 
of one variable.

x

y V = (a, b)

Need for initial / boundary 
conditions!
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Paradigmatic PDEs

Simple transport

ut + c ux = 0

Wave equation

utt = c2 ( uxx + uyy + uzz ) = c2 Du

Diffusion equation

ut = k ( uxx + uyy + uzz ) = k Du

Laplace equation

uxx + uyy + uzz = Du = 0



1 – Initial and boundary conditions, 
and the concept of well-posed problems
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Initial and boundary conditions

General PDE solutions involve arbitrary functions: 
to single out one solution we need auxiliary 
conditions.
For PDEs describing physical phenomena these 
conditions are motivated by physics and take the 
form of initial or boundary conditions:
• an initial condition specifies the physical state at 

a particular time t0.
• a boundary condition specifies the specifies the 

physical state on the boundary of the domain D
in which the PDE is valid.
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Initial conditions

For the diffusion equation ut = k Du, 
the initial condition is 

where                                 is a given function. 

For the wave equation utt = c2 Du, 
a pair of initial conditions is needed: 

where           is the initial position and           is the 
initial velocity.
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E.g. initial temperature,
initial concentration …

This will be proven 
later in the course.



Boundary conditions

The three most common types of boundary 
conditions are: 

• (D) u is specified (“Dirichlet condition”)

• (N) the normal derivative ∂u / ∂n is specified
(“Neumann condition”)

• (R) ∂u / ∂n + a u  is specified (“Robin condition”) 

where a is a given function of x, y, z, and t. 

Each is to hold for all t
and for x = (x, y, z) belonging to bdy D. 
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E.g. 
violin string

E.g. string 
free to move 
transversally

E.g. string 
attached to 
a spring



Boundary conditions (cont’d)

Usually we write (D), (N), and (R) as equations. 

For instance, (N) is written as the equation 

∂u / ∂n = g(x, t)

where g is a given function that could be called 
the boundary data. 

Any of these boundary conditions is called 
homogeneous if the specified function equals zero. 
Otherwise it is called inhomogeneous.
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Initial and boundary conditions

We will come back later on which initial and/or 
boundary conditions must be specified to set up a 
problem that has a unique solution.

This depends on the PDE being considered, and can 
be analyzed mathematically.

Some PDEs are posed in an unbounded domain D. 
In that case conditions “at infinity” are needed.

“Jump” conditions apply when the domain is made 
of two parts, such as two media for instance.

16E.g. waves at the air-water interface



Well-posed problems

Well-posed problems consist of a PDE in a domain 
with a set of initial and/or boundary conditions (or 
other auxiliary conditions) that enjoy the following 
properties:

1. existence: there exists at least one solution
u(x, t) satisfying all these conditions. 

2. uniqueness: there is at most one solution. 

3. stability: the unique solution u(x, t) depends in 
a stable manner on the data of the problem. 
This means that if the data are changed a little, 
the corresponding solution changes only a little.
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This is 
crucial 
because you 
can never 
measure the 
input data 
with perfect
precision; 
but only up 
to some 
level of 
accuracy
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2 – Types of second-order equations
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Types of second order equations

Laplace, wave, and diffusion equations are in some 
sense typical among all second-order PDEs. 

However, these three equations are radically 
different from each other, in terms of represented 
physics, analytical features and numerical schemes.

It is natural that the Laplace equation uxx + uyy = 0
and the wave equation uxx − uyy = 0 should have 
very different properties: after all, the algebraic 
equation x2 + y2 = 1 represents a circle, whereas 
the equation x2 − y2 = 1 represents a hyperbola. 
The parabola is somehow in between. 
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Types of Second Order Equations

Let’s consider the second order PDE in two 
variables

Theorem 1. By a linear transformation of the 
independent variables, the equation can be 
reduced to one of three forms: 
(i) Elliptic case: If                       , it is reducible to

(where · · · denotes terms of order 1 or 0)
21



Types of Second Order Equations

(ii) Hyperbolic case: If                       , it is reducible to

(iii) Parabolic case: if                       , it is reducibe to

(unless a11 = a12 = a22 = 0 → 1st order PDE)

We will come back to this classification (and a 
generalization) later in the course.
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Geometric analogy

The key quantity that determines the type of such a 
PDE is its discriminant:

.
This reminds the discriminant of a quadratic equation

whose solutions trace out a plane curve.
The discriminant fixes its geometric type:
(i) an ellipse: If              
(ii) a hyperbola: If              
(iii) a parabola: If             
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3 – Types of systems of first-order PDEs
i. 1st order quasi-linear PDEs
ii. Introductory example
iii. General theory
iv. Application to a simple example
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Here, we focus on systems of 1st order quasi-
linear PDEs, with two independent variables

The motivation for studying systems of quasi-linear 
1st order PDEs is twofold:

• a broad range of processes in engineering may 
be described by a set of 1st order PDEs;

• some higher order PDEs may be transformed 
into a system of 1st order PDEs.

Definition   A quasi-linear PDE is a PDE in which 
the derivatives of highest order with respect to 
each independent variable appear linearly.
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Quasi-linear higher order PDEs may be 
transformed into a system of 1st order PDEs

Let us consider as an example this 2nd order PDE:

Define   p = ux and   q = uy,   so that the original 
PDE is equivalent to this system of 1st order PDEs:
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Aim: combine the equations so that you 
end up with a set of ODEs, instead of PDEs

Let us consider now this simpler example:

where, in general, a and b can be functions of x, t, 
ux and ut (not u). Notation e refers to + 1 or – 1.

The wave and Laplace equations are particular cases.

Defining    p = ux and   q = ut,   the 2nd order PDE is 
equivalent to this system of 1st order PDEs:
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Aim: combine the equations so that you 
end up with a set of ODEs, instead of PDEs

Linearly combining Eqs (1) and (2): 

s (1) + l (2),

with s and l coefficients to be determined, leads 
to:
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Aim: combine the equations so that you 
end up with a set of ODEs, instead of PDEs

or, by re-arranging the terms,

29

  2
t x t xq a p bs l l s e s         

 
 

2
, , ,

, , ,

t x x

t

q q a x t p q p

p b x t p q

s l se

l s

      
  

1

2 2
ss l 

2

2 2 4
sal s 

curvilinear coordinates, 
with slopes 

1

dx

dt

l
s

  
2

2

dx a

dt

s e
l

  





30

Aim: combine the equations so that you 
end up with a set of ODEs, instead of PDEs

To obtain ODEs (instead of PDEs), the derivation 
operators in the two terms should be the same 
(i.e. the slopes ℓ1 and ℓ2 of the curvilinear 
coordinates s1 and s2 should be equal): 

This leads to the compatibility condition   ℓ 2 = e a2.
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Case 1: assume e = + 1 (and a > 0)

The compatibility equation ℓ 2 = a2 has two real 
solutions:   ℓ = a and ℓ =  a.

Hence, the considered system of two PDEs has two 
independent families of characteristic curves.

By definition, such a system is called hyperbolic.

Note that the slope of the characteristic curves 
depends only on a, the coefficient of the 
derivatives of highest order, not on b. 

In other words, b does not influence the PDE type.


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The slope of the characteristics are eigenvalues …

The considered system of 1st order PDEs 

may be written in matrix form:

Note that the eigenvalues of matrix A are nothing 
but the slopes of the characteristics: ℓ = ± a.
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Case 2: assume e =  1 (and a > 0)

The compatibility equation ℓ 2 =  a2 has two 
complex solutions:   ℓ = i a and ℓ =  i a.

Hence, the considered system of two PDEs has 
no real families of characteristic curves.

By definition, such a system is called elliptic.

Again, note that the solutions of the compatibility 
equation depend only on a, the coefficient of the 
derivatives of highest order, not on b. 

Here also, b does not influence the type of PDE.


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More general theory of characteristics
for a system of 1st order PDEs

Consider now the most general system of 1st order 
PDEs, with N dependent variables / unknowns:

ut + A(x, t, u) ux = h(x, t, u)

with u the vector of N unknown functions, 
A a N by N matrix and h a vector of dimension N.

Any PDE i of the system may be written as:


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More general theory of characteristics
for a system of 1st order PDEs

Let us look for a linear combination of the PDEs of 
the system:

where si are coefficients to be determined.

Using Kroenecker delta dij, the equations write:
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More general theory of characteristics
for a system of 1st order PDEs

The terms in the square brackets are all directional 
derivatives, which could be written in characteristic 
form, as follows:

… provided that compatibility conditions are verified!


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More general theory of characteristics
for a system of 1st order PDEs

The following algebraic equations need to be 
satisfied, for all j:

 Compatibility condition: det(AT – ℓ I) = 0.
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More general theory of characteristics
for a system of 1st order PDEs

From the compatibility condition det(AT – ℓ I) = 0, 
the N possible characteristic slopes ℓk of a system of 
1st order PDEs are the eigenvalues of matrix A.

If all eigenvalues of A are real (and corresponding 
eigenvectors are independent, i.e. A is 
diagonalisable), then the system of PDEs is 
hyperbolic.

If all eigenvalues of A are complex (and 
corresponding eigenvectors are independent, i.e. A
is diagonalisable), then the system of PDEs is elliptic.


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More general theory of characteristics
for a system of 1st order PDEs

The case where the eigenvectors are not 
independent, i.e. A is not diagonalisable, often 
corresponds to parabolic systems of PDEs.

If some eigenvalues of A are real and others are 
complex, then the system of PDEs is hybrid.


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A simple example

We consider the case of the wave equation:

utt = c2 uxx

Let us define the following new unknowns:

q = ut and         p = ux

Then, we have the system of 1st order PDEs:

qt − c2 px = 0

pt − qx = 0





41

A simple example

The system may be written in matrix form as

The eigenvalues of the matrix are l = ± c, which 
correspond to the slopes of the characteristics.

The system of two 1st order PDEs has two families 
of characteristics, just like 2nd order wave equation.
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Take-home messages

By definition, the solution of a “well-posed”
problem (i) exists, (ii) is unique and (iii) is stable. 
This is achieved by prescribing suitable auxiliary
conditions, such as initial and boundary conditions.
Depending on the sign of the coefficients of the 
highest derivatives, second-order PDEs are either 
(i) elliptic, (ii) hyperbolic, or (iii) parabolic.
For a system of 1st-order PDEs, the type of the 
system depends on the eigenvalues of the matrix.
The various types of PDEs have radically different 
properties → next class: the wave equation.
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