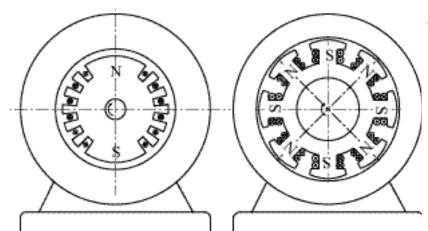
Synchronous machines

Synchronous generator (alternator): transforms mechanical energy into electric energy; designed to generate sinusoidal voltages and currents; used in most power plants, for car alternators, etc.

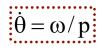
Synchronous motor: transforms electric energy into mechanical energy; used for high-power applications (ships, original TGV, electric cars...)

Turbo-alternator



Saliant poles

Rotor (inductor): 2p poles with excitation windings carrying DC current; non-laminated magnetic material

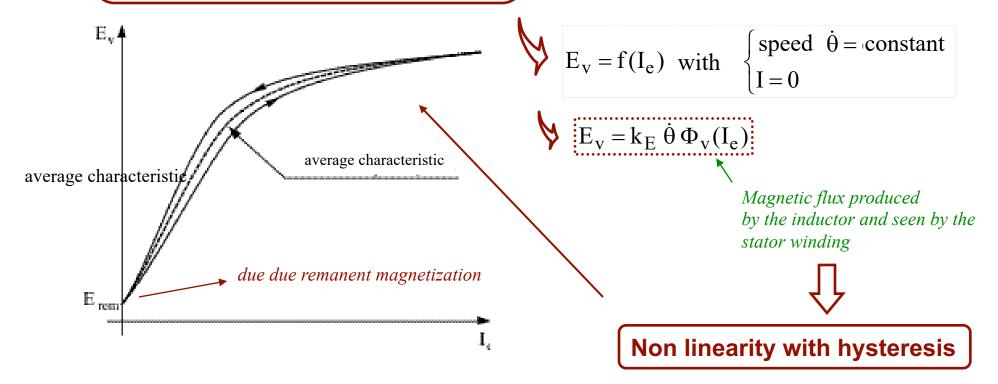


Stator: polyphase (e.g. 3-phase) winding in slots; laminated magnetic material

No-load characteristic

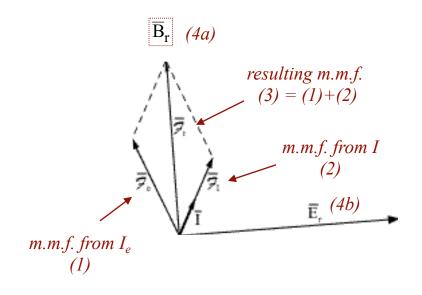
Evolution of the voltage E_v in a stator phase vs. intensity of the excitation current I_e , for a given rotation speed and with no generated stator current

- The rotor winding, carrying the DC current I_e and rotating at speed ω/p , produces in the airgap a sliding m.m.f. F_e (as seen from the stator).
- F_e generates a magnetic flux density B_r (with the same phase) in the airgap, which induces sinusoidal e.m.f.s E_v in the stator windings, with a phase lag of $\pi/2$.



Vector diagram with load

Diagram of magnetomotive forces and magnetic flux densities



$$\overline{F}_e = \gamma \ \overline{I}_e$$
 and $\overline{F}_I = \delta \ \overline{I}$

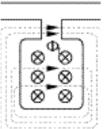
- (1) The rotor winding, carrying the DC current I_e and rotating at speed ω/p , produces in the airgap a sliding m.m.f. \overline{F}_e (as seen from the stator).
- (2) The polyphase current \overline{I} in the stator winding produces a sliding m.m.f. $\overline{F_I}$ (in phase with \overline{I}).
- (3) The resulting m.m.f. is $\overline{F}_r = \overline{F}_e + \overline{F}_I$.
- (4) \overline{F}_r generates a magnetic flux density \overline{B}_r (with the same phase) in the airgap,, which induces sinusoidal e.m.f.s in the stator windings, with a phase lag of $\pi/2$.

Vector diagram with load

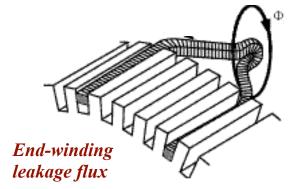
Stator leakage flux

(seen by the stator but not coming from the rotor)

Slot leakage flux



rotor



e.m.f. induced by leakage flux

$$e_{\lambda}(t) = -\lambda \partial_{t}i_{1} - \lambda_{m} \partial_{t}i_{2} - \lambda_{m} \partial_{t}i_{3}$$
$$= -(\lambda - \lambda_{m}) \partial_{t}i_{1}$$

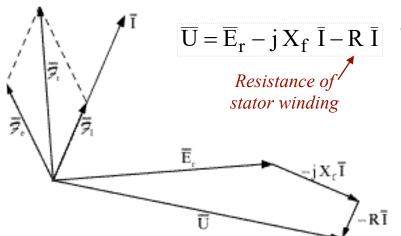
because

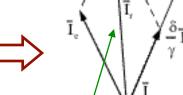
$$i_1 + i_2 + i_3 = 0$$

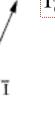
$$X_f = \omega (\lambda - \lambda_m)$$

Stator leakage reactance

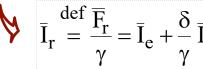
$$\overline{E}_t = \overline{E}_r - j X_f \overline{I}$$
 total e.m.f.







 $\overline{F}_e = \gamma \overline{I}_e$ and $\overline{F}_I = \delta \overline{I}$ $\overline{F}_{r} = \gamma \overline{I}_{e} + \delta \overline{I}$



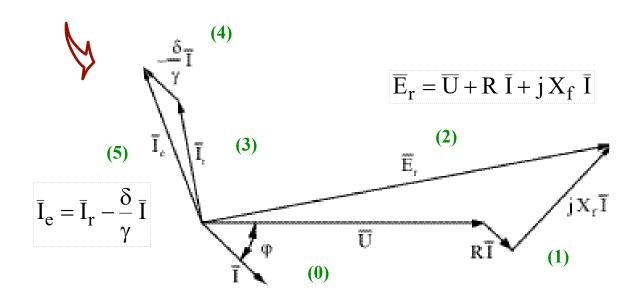
Equivalent

excitation current

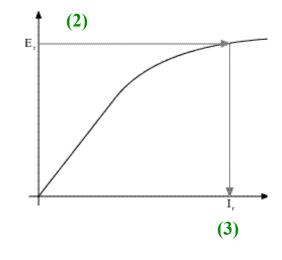
 $E_r = no\text{-load e.m.f.}$ produced by I_r

Potier diagram

'Which excitation current I_e should one impose in the synchronous machine to reach the operating point corresponding to a given voltage U and current I in the stator, with a phase shift of ϕ between U and I?'



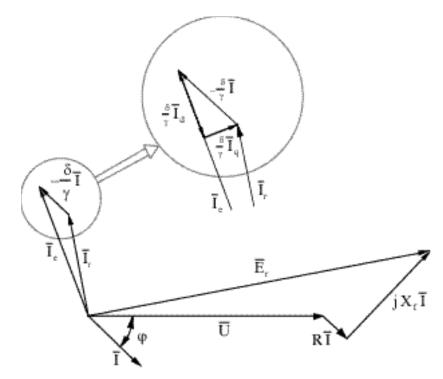
 $E_r \equiv \text{no-load e.m.f produced by the}$ equivalent current I_r



Reaction

Demagnetizing reaction

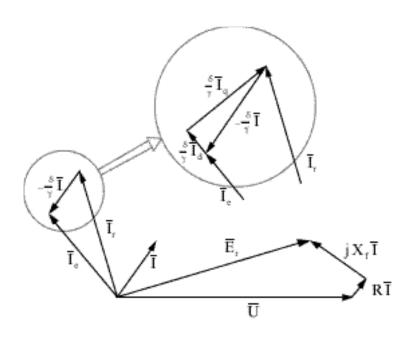
The m.m.f. is smaller than the no-load m.m.f. $(I_r \le I_e)$



Inductive behaviour of the load (I lagging behind U)

Magnetizing reaction

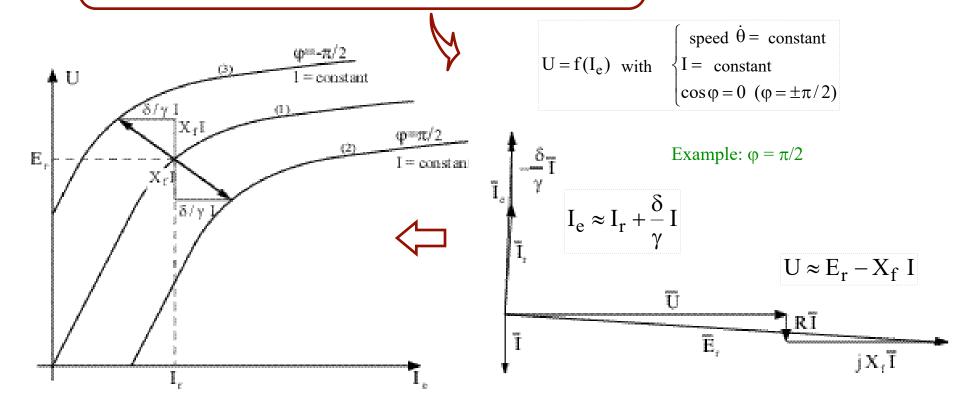
The m.m.f. is larger than the no-load m.m.f. $(I_r > I_e)$



Capacitive behaviour of the load (I in front of U)

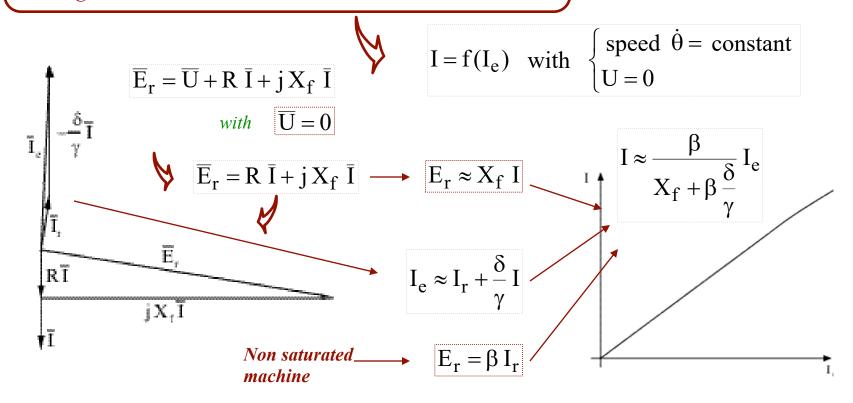
Zero power factor characteristic

Evolution of the stator voltage U as a function of the excitation current I_e , for a given rotation speed and stator current, with a zero power factor



Short-circuit characteristic

Evolution of the stator current as a function of the excitation current I_e , for a given rotation speed and with the stator windings in short-circuit

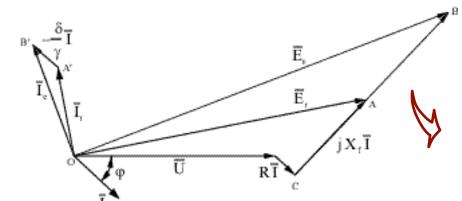


Simplified vector diagram

Behn-Eschenburg's method – Synchronous reactance X_s

When the magnetic materials are not saturated, the combined effect of the reaction and of stator leakage fluxes can be taken into account thanks to a single parameter: the synchronous reactance

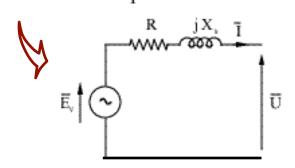
$$\frac{E_{v}}{I_{e}} = \frac{E_{r}}{I_{r}} = constant$$



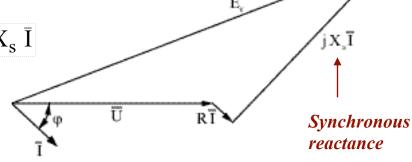
Equal angles OAB and A'OB'

Similar triangles OAB and OA'B'

A, B and C colinear



$$\overline{\mathbf{E}}_{\mathbf{v}} = \overline{\mathbf{U}} + \mathbf{R} \ \overline{\mathbf{I}} + \mathbf{j} \ \mathbf{X}_{\mathbf{s}} \ \overline{\mathbf{I}}$$



Experimental determination of X_s

Behn-Eschenburg's method – Synchronous reactance X_s

$$\overline{\mathbf{U}} = \mathbf{0}$$

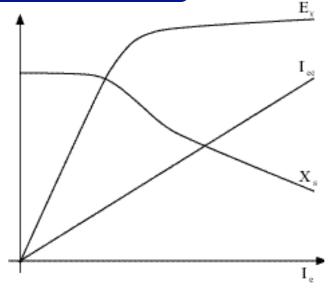
$$\overline{\overline{U}} = 0$$
 \Rightarrow $\overline{\overline{E}}_{v} = (R + j X_{s}) \overline{I}_{cc}$

$$\Rightarrow$$

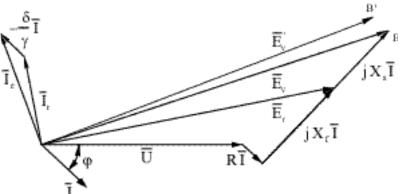
$$\Rightarrow R + j X_s = \frac{\overline{E}_v}{\overline{I}_{cc}} \quad with \quad R << X_s$$

$$R \ll X_s$$

$$X_{s} \approx \frac{E_{v}(I_{e})}{I_{cc}(I_{e})}$$



Approximation when magnetic materials are saturated!

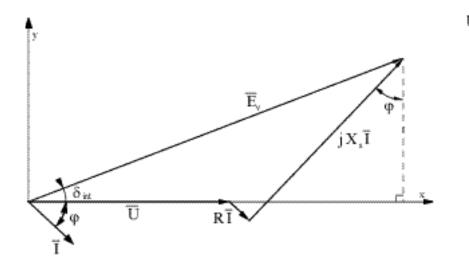


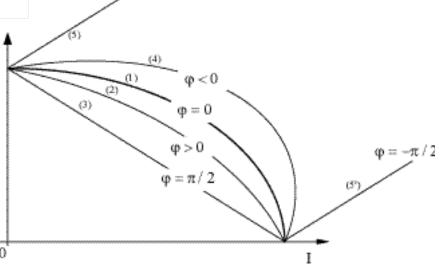
Exterior characteristic

Alternator exterior characteristic

Evolution of the voltage U on a given stator phase as a function of the current Iin this phase, when the alternator drives a load characterized by a constant power factor, at constant speed and excitation

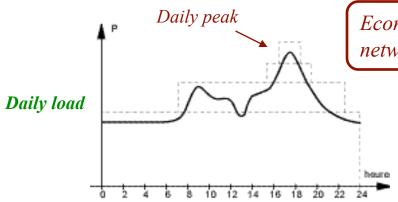
$$U = f(I) \text{ with } \begin{cases} \text{speed } \dot{\theta} = \text{constant} \\ I_e = \text{constant} \\ \cos \phi = \text{constant} \end{cases}$$





Network connection

Need for interconnection of electric power plants

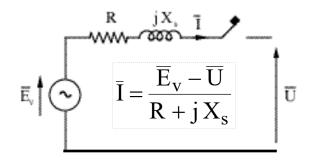


Economical organization of power production + Stability of the network despite local defects

Synchronization of an alternaltor on an ideal (infinitely powerful) AC network

Large number of production units in parallel

⇒ constant voltage and frequency



The current should be zero when the connection is made \rightarrow 4 conditions

- 1. same pulsation ω (correct rotation speed)
- **2.** same amplitudes for E_v and U (adjusting I_o)
- 3. no phase shift between E_v and U
- 4. identical phase ordering (in a 3-phase system)

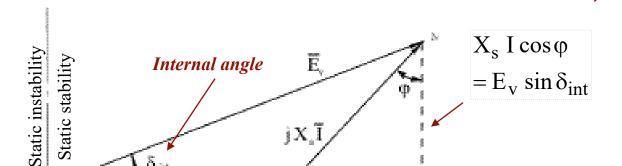
Behaviour with load

Active electric power

 $P_{elm} \approx P = 3 U I \cos \varphi$

Torque

 $C = \frac{P}{\omega/p} = \frac{3p}{\omega} U I \cos \varphi$



$$C = \frac{3 p}{\omega X_s} U E_v \sin \delta_{int}$$

Internal angle

After network synchronization, there is no exchanged current. Then:

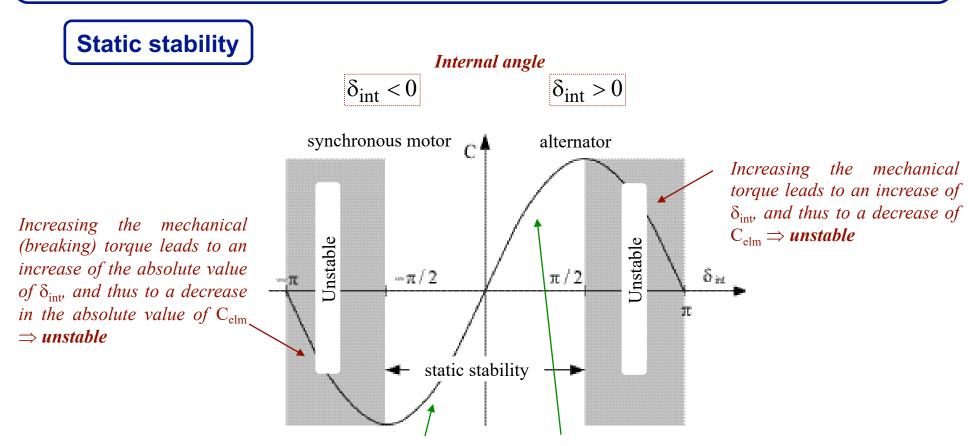
Electromagnetic power

- If mechanical power is provided to the alternator, E_v gets ahead of $U \Rightarrow \delta_{int}$ increases (until the equilibrium of the electromagnetic and mechanical torques)
- If a braking torque is applied to the alternator, E_v gets behind $U \Rightarrow \delta_{int}$ decreases (negative torque)

The variations of the rotor mechanical angle $\Delta\delta_{mec}$ are proportional to the variations of the internal (electric) angle $\Delta\delta_{int}$

$$\Delta \delta_{\rm mec} = \frac{\Delta \delta_{\rm int}}{p}$$

Behaviour with load



Increasing the mechanical (breaking) torque leads to an increase of the absolute value of δ_{int} and thus of $C_{elm} \Rightarrow \textit{stable}$.

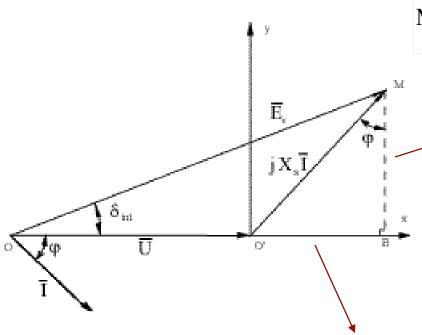
The equilibrium is reached when the two torques are equal.

Increasing the mechanical torque leads to an increase of δ_{int} and thus of $C_{elm} \Rightarrow \textit{stable}$.

The equilibrium is reached when the two torques are equal.

Behaviour with load

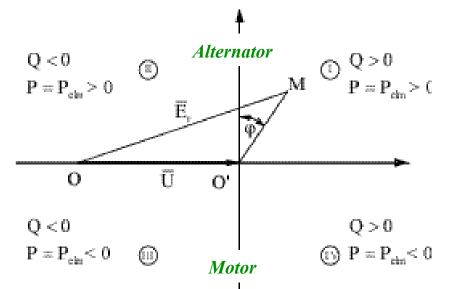
Power diagram



O'B =
$$X_s I \sin \phi = \frac{X_s}{3 U} 3 U I \sin \phi = \frac{X_s}{3 U} Q$$

Reactive power Q

Active power P



V-curves (Mordey curves)

Evolution of the stator current I as a function of the excitation current I_e of a synchronous machine connected to an ideal network, at constant active power

