Single-phase transformer

2 windings (primary \& secondary) around a magnetic core (magnetic coupling)

Open or closed secondary ...

Electric energy conversion from one voltage level to another

General transformer relations

Primary winding equation

Secondary winding equation

Leakage reluctances

$$
\frac{\mathrm{e}_{1}}{\mathrm{e}_{2}}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\mathrm{n}
$$

Transformation ratio

$$
\Phi=\frac{\mathrm{n}_{1} \mathrm{i}_{1}-\mathrm{n}_{2} \mathrm{i}_{2}}{\mathrm{R}} \Rightarrow \mathrm{e}_{1}=\frac{\mathrm{n}_{1}^{2}}{\mathrm{R}}\left(\partial_{\mathrm{t}} \mathrm{i}_{1}-\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}} \partial_{\mathrm{t}} \mathrm{i}_{2}\right)
$$

Transformer equivalent circuit

$$
\begin{align*}
& \mathrm{u}_{2}=-\mathrm{R}_{2} \mathrm{i}_{2}-\lambda_{2} \partial_{\mathrm{t}} \mathrm{i}_{2}+\mathrm{e}_{2} \tag{a}\\
& \frac{\mathrm{e}_{1}}{\mathrm{e}_{2}}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\mathrm{n}
\end{align*}
$$

$$
\longrightarrow \mathrm{e}_{1}=\mathrm{nu}_{2}+\mathrm{n}^{2} \mathrm{R}_{2} \frac{1}{\mathrm{n}} \mathrm{i}_{2}+\mathrm{n}^{2} \lambda_{2} \frac{1}{\mathrm{n}} \partial_{\mathrm{t}} \mathrm{i}_{2}
$$

$$
M^{\text {Secondary quantities as seen from the primary }}
$$

$$
\begin{aligned}
& : \mathrm{e}_{1}=\mathrm{u}_{2}+\mathrm{R}^{1} \mathrm{i}_{2}+\lambda_{2} \partial_{0} \mathrm{i}^{\mathrm{i}}{ }^{2} \\
& \text { (b) }
\end{aligned}
$$

Complex formalism: phasors

Complex representation of sinusoidal quantities

Limit cases with phasors

No-load case

$$
\overline{\mathrm{I}}_{2}^{\prime}=0 \Rightarrow \overline{\mathrm{U}}_{2}^{\prime}=\overline{\mathrm{E}}_{1}=\frac{\mathrm{jX}}{\mu} \mathrm{R}_{1}+\mathrm{j} \mathrm{X}_{1}+\mathrm{jX} \mathrm{X}_{\mu} \quad \overline{\mathrm{U}}_{1}
$$

$$
\mathrm{I}_{1}=\mathrm{I}_{\mu} \ll \mathrm{I}_{\text {nominal }}
$$

Short-circuit case

$$
\bar{U}_{2}^{\prime}=0 \Rightarrow \frac{\bar{I}_{1}}{{\overline{I_{2}^{\prime}}}_{2}}=\frac{\mathrm{R}_{2}^{\prime}+\mathrm{jX}_{2}+\mathrm{jX}_{\mu}}{j \mathrm{X}_{\mu}}
$$

$\mathrm{I}_{1} \gg!$

Operating points

Simplified equivalent circuit

Magnetic losses and saturation

Hysteresis \& eddy currents

Eddy current losses
proportional to \mathbf{b}^{2}, hence to Φ^{2}, hence to $\mathrm{E}_{1}{ }^{2}$
Idem for hysteresis losses (approx.)
§ $p_{\text {mag }}=K_{\text {mag }} E_{1}^{2}=\frac{E_{1}^{2}}{R_{H+F}}$

(frequency dependent!)

Transformers

Equivalent circuit parameters

Experimental determination of the parameters from the equivalent circuit

No-load test $\mathrm{I} \ll \Rightarrow$ p $_{\text {Joule primary }} \ll$

$$
\mathrm{P}_{\mathrm{V}}=\frac{\mathrm{U}_{1}^{2}}{\mathrm{R}_{\mathrm{H}+\mathrm{F}}} \quad \mathrm{Q}_{\mathrm{V}}=\frac{\mathrm{U}_{1}^{2}}{\mathrm{X}_{\mu}}
$$

Short-circuit test
$\mathrm{U}_{1} \ll \Rightarrow \mathrm{p}_{\mathrm{mag}} \ll$
$\mathrm{P}_{\mathrm{cc}}=\left(\mathrm{R}_{1}+\mathrm{R}^{\prime}{ }_{2}\right) \mathrm{I}_{\mathrm{cc}}^{2}$
$\mathrm{Q}_{\mathrm{cc}}=\left(\mathrm{X}_{1}+\mathrm{X}_{2}{ }_{2}\right) \mathrm{I}_{\mathrm{cc}}^{2}$

Construction types

Transformer with separate columns
High leakage flux

Transformer with concentric windings

Series or parallel connection of windings 1 : High Voltage, 2 : Low Voltage

Shell-type transformer (« cuirassé »)
1 : High Voltage, 2 : Low Voltage

Three-phase transformer

3 primary windings and 3 secondary windings with star or triangle connection

Three columns

Five columns

$$
\Phi_{\mathrm{a}}+\Phi_{\mathrm{b}}+\Phi_{\mathrm{c}}=0
$$

