Exercise session 10: Electronic control systems

12 April 2024

Florent Purnode (fareettrumodeouirige bep
Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium

In this class...

$>$ Inductor in steady state \rightarrow Volt-second balance
$>$ Capacitor in steady state \rightarrow Amp-second balance
> PWM input voltage: The duty cycle
> The buck converter
$>$ Current ripples Δi_{L}
> Exercises 16 \& 17

Transient response of an inductor

RL circuit with square input voltage \rightarrow SRA

In DC-DC converters, the ripple is often much smaller than the DC part:
Small ripple approximation (SRA): $I_{L} \gg i_{L}^{\text {ripple }}(t) \Rightarrow i_{L}(t) \approx I_{L}$
For well-chosen values of L, R, and frequency, the RL circuit reaches a steady state in which the current can be decomposed into a DC component I_{L} and a ripple component $i_{L}^{\text {ripple }}(t)$:

$$
i_{L}(t)=I_{L}+i_{L}^{\text {ripple }}(t)
$$

Inductor in steady state $\boldsymbol{\rightarrow}$ Volt-second balance

In steady state, the inductor current repeats every period T :

$$
i_{L}\left(t_{0}+T\right)-i_{L}\left(t_{0}\right)=0
$$

$$
\int_{0}^{t_{0}+T} \frac{v_{L}(t)}{L} d t-\int_{0}^{t_{0}} \frac{v_{L}(t)}{L} d t=\int_{t_{0}}^{t_{0}+T} \frac{v_{L}(t)}{L} d t=0
$$

Volt-second balance
In steady-state operation, the average voltage across an inductor is zero over one switching period:

$$
<v_{L}(t)>=\frac{1}{T_{s}} \int_{t_{0}}^{t_{0}+T} v_{L}(t) d t=0
$$

Transient response of a capacitor

RC circuit with square input voltage \rightarrow SRA

For well-chosen values of C, R, and frequency, the RC circuit reaches a steady state in which the voltage can be decomposed into a DC component V_{C} and a ripple component $v_{C}^{\text {ripple }}(t)$:

In DC-DC converters, the ripple is often much smaller than the DC part:
Small ripple approximation (SRA): $\quad V_{C} \gg v_{C}^{\text {ripple }}(t) \Rightarrow v_{C}(t) \approx V_{C}$

$$
v_{c}(t)=V_{C}+v_{C}^{\text {ripple }}(t)
$$

Capacitor in steady state \rightarrow Amp-second balance

In steady state, the capacitor voltage repeats every period T :

$$
\begin{gathered}
v_{L}\left(t_{0}+T\right)-v_{L}\left(t_{0}\right)=0 \\
\int_{0}^{t_{0}+T} \frac{i_{C}(t)}{C} d t-\int_{0}^{t_{0}} \frac{i_{C}(t)}{C} d t=\int_{t_{0}}^{t_{0}+T} \frac{i_{C}(t)}{C} d t=c \frac{d v_{L}(t)}{d t}
\end{gathered}
$$

Amp-second balance

In steady-state operation, the average current through a capacitor is zero over one switching period:

$$
<i_{C}(t)>=\frac{1}{T_{s}} \int_{t_{0}}^{t_{0}+T} i_{C}(t) d t=0
$$

Inductors \& capacitors in steady state: recap

Small ripple approximation (SRA) for inductor current

$$
i_{L}(t) \approx I_{L}
$$

Volt-second balance for inductor voltage

$$
<v_{L}(t)>=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} v_{L}(t) d t=0
$$

Small ripple approximation (SRA) for capacitor
voltage

$$
v_{C}(t) \approx V_{C}
$$

Amp-second balance for capacitor current

$$
<i_{C}(t)>=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} i_{C}(t) d t=0
$$

PWM input voltage: The duty cycle

PWM: Pulse width modulation

D is the duty cycle, that is the percentage of time the voltage is high

$$
\Rightarrow D \in[0 ; 1]
$$

By modifying the duty cycle D, one can control the voltages and currents.
Note: In steady state, only one period is enough to describe the circuit behavior.

A basic DC-DC converter: the buck converter

PWM signal

An inductor and a capacitor are used in a low pass filter configuration to smooth the voltage $v_{x}(t)$ after the switch

DC-DC converter analysis - Methodology

To analyze a DC-DC converter:

1. Subdivide the circuit according to the duty cycle
2. For each sub-circuit, evaluate the voltages across the inductors and the currents through the capacitors
3. Apply the small ripple approximation (SRA) to the currents through the inductors and to the voltages across the capacitors
4. Apply the volt-second balance on the inductor voltages and solve the system
5. Apply the amp-second balance on the capacitor currents and solve the system
6. From the voltage across the inductor, determine the inductor current ripples
[^0]
1. Subdivide the circuit

Make sure to use the same conventions in both subcircuits
The current direction MUST remain the same. The voltage direction MUST remain the same

2. Find v_{L} and $i_{c}-3$. Apply SRA

$$
\begin{array}{c|c}
v_{L} & =V_{g}-v \\
i_{C} & =i_{L}-\frac{v}{R}
\end{array} \quad \begin{gathered}
v_{L}=-v \\
i_{C}=i_{L}-\frac{v}{R}
\end{gathered}
$$

4. Volt-second balance - 5. Amp-second balance

$$
\begin{gathered}
t \in[0 ; D T] \\
v_{L}=V_{g}-V \\
i_{C}=I_{L}-\frac{V}{R}
\end{gathered}
$$

Volt-second balance:

$$
\begin{aligned}
<v_{L}(t)> & =\frac{1}{T} \int_{0}^{T} v_{L} d t \\
& =\frac{1}{T} \int_{0}^{D T} v_{L} d t+\frac{1}{T} \int_{D T}^{T} v_{L} d t \\
& =\frac{1}{T} \int_{0}^{D T}\left(V_{g}-V\right) d t+\frac{1}{T} \int_{D T}^{T}-V d t \\
& =D\left(V_{g}-V\right)+(1-D)(-V) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow D V_{g}-D V=V-D V \\
& \Rightarrow M(D)=\frac{V}{V_{g}}=D
\end{aligned}
$$

$$
\begin{gathered}
t \in[D T ; T] \\
v_{L}=-V \\
i_{C}=I_{L}-\frac{V}{R}
\end{gathered}
$$

Amp-second balance:

$$
\begin{aligned}
<i_{C}(t)> & =\frac{1}{T} \int_{0}^{T} i_{C} d t \\
& =\frac{1}{T} \int_{0}^{D T} i_{C} d t+\frac{1}{T} \int_{D T}^{T} i_{C} d t \\
& =\frac{1}{T} \int_{0}^{D T}\left(I_{L}-\frac{V}{R}\right) d t+\frac{1}{T} \int_{D T}^{T}\left(I_{L}-\frac{V}{R}\right) d t \\
& =D\left(I_{L}-\frac{V}{R}\right)+(1-D)\left(I_{L}-\frac{V}{R}\right) \\
& =0
\end{aligned}
$$

$$
\Rightarrow I_{L}=\frac{V}{R}
$$

6. Current ripples Δi_{L}

For $t \in[0, D T], \quad v_{L}(t)=V_{g}-V$
For $t \in[D T ; T], \quad v_{L}(t)=-V$

$$
\sqrt{\zeta} v_{L}(t)=L \frac{d i_{L}(t)}{d t}
$$

For $t \in[0, D T], \quad \frac{d i_{L}(t)}{d t}=\frac{V g-V}{L}$
For $t \in[D T ; T], \quad \frac{d i_{L}(t)}{d t}=-\frac{V}{L}$
$\Rightarrow 2 \Delta i_{L}=\frac{V_{g}-V}{L} D T=(1-D) \frac{V_{g}}{L} D T$

$$
\Rightarrow \Delta i_{L}=\frac{1}{2} D(1-D) \frac{V_{g}}{L} T
$$

Exercises

Exercise 16: DC-DC boost converter
Exercise 17: Regenerative braking

Exercise 16: DC-DC boost converter

In some electronic calculators, the battery voltage is set to $V_{i n}=3 V$, whereas the electronic parts work under $V_{\text {out }}=9 \mathrm{~V}$. A DC-DC boost converter is used to increase the battery low voltage to the higher value (9 V) with high efficiency. The DC-DC boost converter can be modelled by the following circuit:

Assuming steady-state conditions:

1. Find the waveforms of the voltage across the ideal switch $\left(v_{s}\right)$ and the voltage across the inductance $\left(v_{L}\right)$. Deduce the inductance current waveform from it.
2. Express the ratio $\frac{V_{\text {out }}}{V_{\text {in }}}$ in terms of the duty cycle D.
3. Give the value of D in this situation.
4. Find the expression of the inductor current ripple Δi_{L} in terms of $V_{\text {out }}, V_{i n}, D, T_{S}$ and L.
5. Estimate the inductor current ripple Δi_{L} for a switching frequency $f_{s}=30 \mathrm{KHz}$ and an inductance of 75 mH . Compare the value of the current ripple to the value of the output current if the system draws 15 mW .

Exercise 17: Regenerative braking

Hybrid electric vehicles are generally provided with regenerative braking, allowing to load onboard battery when the vehicle is braking or when the vehicle acts as a driving load. In this exercise, the DC motor, having an electromotive force E and internal resistance $R=0.5 \Omega$ is connected (when the regenerative breaking is active) to a battery delivering a current I under the voltage $V=100 \mathrm{~V}$ using a chopper DC-DC converter:

1. Find the mean value of $v_{m}(t): V_{m}$.
2. Find the link between the mean input current I_{m} and the mean output current I.
3. Express the voltage V with respect to I_{m}, E, R and the duty cycle D.
4. Compute the duty cycle D allowing to obtain $V_{m}=60 \mathrm{~V}$.
5. Compute the mean braking current I_{m} when the motor delivers an electromotive force $E=70 \mathrm{~V}$ for $V_{m}=$ 60 V .
6. Calculate the braking power $E I_{m}$ and the braking torque C_{m} if the motor speed of rotation is $\dot{\theta}=955 R P M$.

Homework 22: DC-DC buck converter

In some models of an electric car, the battery voltage is set to $E=302 \mathrm{~V}$, whereas the auxiliaries are working with $V_{o}=12 \mathrm{~V}$. A DC-DC buck converter is used to reduce the battery high voltage to the lower value (12 V) with high efficiency. The DC-DC buck converter can be modelled by the following circuit.

Assuming steady-state conditions:

1. Find the waveforms of the voltage across the ideal switch $\left(v_{s}\right)$ and the voltage across the inductance $\left(v_{L}\right)$. Deduce the inductance current waveform from it.
2. Express the ratio $\frac{V_{O}}{E}$ in terms of the duty cycle D.
3. Give the value of D in this situation.
4. Find the expression of the inductor current ripple Δi_{L} in terms of V_{o}, E, D, T_{S} and L.
5. Estimate the inductor current ripple Δi_{L} for a switching frequency $f_{s}=1 \mathrm{KHz}$ and an inductance of 50 mH . Compare the value of the current ripple to the value of the output current if the auxiliaries draw 12 W .

Homework 23: H-bridge circuit

The above figure presents a H -bridge circuit. The switches operate synchronously:

- each in position 1 for $0<t<D T_{s}$
- and in position 2 for $D T_{s}<t<T_{s}$.

1. Derive an expression for the voltage ratio $M(D)=\frac{V}{V_{g}}$.

Homework 24: Buck-boost analysis

The figure on the right presents a buck-boost converter:

1. Find the conversion ratio $M(D)=\frac{V}{V_{g}}$.

2. Find the dependence between the inductor average current I_{L} and the other parameters $\left(V_{g}, R\right.$ and $\left.D\right)$.
3. Given the following specifications: $V_{g}=30 \mathrm{~V}, V=-20 \mathrm{~V}, R=4 \Omega$ and $f_{s}=40 \mathrm{kHz}$, find D and I_{L}.
4. Calculate the value of L that will make the peak inductor current ripple $\Delta \mathrm{i}_{\mathrm{L}}$ equal to 10% of the average inductor current I_{L}.
5. Including the effect of the inductor current ripple, sketch on the same figure:

- The current flowing in the inductor
- The current flowing in terminal 1 of the switch
- The current flowing in terminal 2 of the switch

[^0]: \rightarrow Example with a buck converter

