

Electromagnetic Energy Conversion ELEC0431

Exercise session 9: DC machines

5 April 2024

Florent Purnode (florent.purnode@uliege.be)

Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium

- > Torque on a current loop in a steady magnetic field
- \succ The basic DC motor
- \succ DC motors
- > DC generators
- \succ The different types of excitation
- \succ Exercise 14 & 15

Torque on a current loop in a steady magnetic field

We consider a closed rectangular loop of wire, which can rotate about its axis of symmetry. It is placed within a constant magnetic field perpendicular to this axis.

When a current I_a flows in the loop, the Laplace force $(\vec{F} = q\vec{v} \wedge \vec{B})$ applies on it and create a torque (except when the field lines cross the loop perpendicularly).

As the loop rotates, the torque direction flips whenever the field lines cross the loop perpendicularly, as the current direction remained unchanged seen from the loop. It results in an oscillatory motion.

The basic DC motor

To ensure the loop keeps turning in the same direction, the direction of the current is mechanically inversed every half turn → The current in the wires is AC but the input current is DC.

In this configuration, the torque is not constant:

- It is zero when the field lines cross the loop perpendicularly.
- It is maximum when the field lines are parallel to the surface defined by the loop.

To smoothen the torque, add more wires!

DC motors

The steady magnetic field can be generated by an electromagnet. It is driven by an excitation current I_e :

- In DC machines, I_e flows in the <u>stator</u> windings.
- In synchronous and asynchronous machines, I_e flows in the <u>rotor</u> windings.

The rotor is called the armature, a current I_a flows in it.

DC generators

The DC generator is very similar to the DC motor.

The armature (rotor) is placed within a magnetic field, generated by the stator.

As the armature is made to rotate, it perceives a varying magnetic flux inducing an emf.

The amplitude *E* of this emf increases with the speed of rotation $\dot{\theta}$ and with the amplitude of the flux ϕ (itself function of the excitation current in case the magnetic field is generated by an electromagnet) $\Rightarrow E_v = k_e \dot{\theta} \phi(I_e)$ (same as for synchronous machines)

The commutator and the brushes ensure these emfs are converted into a DC current I_a .

Note that the armature current I_a also produces a magnetic field $\Delta \Phi(I_a)$ which reduces the emf.

$$\Rightarrow E = E_v - k_e \,\dot{\theta} \,\Delta\Phi(I_a) = k_e \,\dot{\theta} \,(\phi(I_e) - \Delta\Phi(I_a)).$$

This is called the armature reaction.

The different types of excitation

When using electromagnets, different winding connections are possible:

From generator to motor, only I and I_a change of direction.

Exercise 14: Brushed DC motor

The motor of a hammer drill has the following characteristics:

- independent excitation DC motor
- Nominal power $P_n = 800 W$
- Nominal speed of rotation $\dot{\theta}_n = 1500 RPM$

- Nominal input voltage $U_n = 220 V$
- Nominal rotor current intensity $I_n = 4.6 A$
- Nominal stator current intensity $I_{en} = 0.35 A$

Using two different excitation currents I_e , the electromotive force has been determined for different rotation speeds:	$I_{e1} = 0.35 A$:			$I_{e2} = 0.2 A$:	<i>n</i> [RPM]	E[V]
		1670	240		1000	100
		1510	220		1800	186
		1380	200		1450	150
		1040	150		1150	120
		820	120		850	90
		620 510	120		560	60
		510	/5		260	30
		110	20		0	0
		0	0		0	0

- 1. Plot *E* with respect to $\dot{\theta}$ for I_{e1} and I_{e2} and justify the shape of the curves.
- 2. Show that the flux Φ is not proportional to the excitation current intensity I_e .

Exercise 14: Brushed DC motor

Maintaining the nominal speed of rotation, the electromotive force is measured for different excitation currents I_e :

3. Plot *E* with respect to I_e and justify the shape of the curves.

Exercise 14: Brushed DC motor

	Some measurements have allowed to quantify the stator resistance $R_{\rm res} = 512.1$ O and the armsture resistance $R_{\rm res} = 4.6$ O		<i>U</i> [V]	<i>I</i> [A]
π_e -	- 512.1 Ω and the atmatule resistance $R_a = 4.0 \Omega$.	0.4	222	0.43
	Draw the equivalent model of the motor	0.35	213	0.44
4.	Draw the equivalent model of the motor.	0.3	198	0.45
		0.25	176	0.48
	An unloaded test at constant nominal speed has been performed	0.2	151	0.56
	to measure the voltage across the rotor U and the current \longrightarrow	0.15	120	0.66
	drawn in the rotor I for different excitation currents value I_{ρ} .	0.1	85	0.92

- 5. Plot the collective (i.e. ferromagnetic plus mechanical) losses p_c with respect to I_e .
- 6. For the linear part of the curve, determine the mechanical losses p_m at the nominal speed of rotation.

A hole is drilled using the drill. The nominal speed of rotation remains constant while the rotor draws a current I_0 of 3 A when a voltage $U_0 = 212 V$ is measured on the rotor terminals.

- 7. Calculate the electromotive force and deduce the value of the excitation current I_{e0} .
- 8. Compute the shaft output power P_{mec} .
- 9. Deduce the resistive torque C_r induced by the drilling process.

Exercise 15: Brushed DC motor with series excitation

Consider a brushed DC motor with its excitation in series. This motor is fed by a constant voltage source U = 220 V. To simplify the study, the armature and inductor resistances, the collective losses and the armature reaction are neglected.

- 1. Show that the electromagnetic torque is proportional to the square of the consumed current.
- 2. Show that the electromagnetic torque is inversely proportional to the square of the rotational speed of the motor.
- 3. Deduce that there is a runaway of the motor at no load.
- 4. According to sub-question 2, one can write that:

$$C_{elm} = \frac{a}{\dot{\theta}^2}$$

where C_{elm} corresponds to the electromagnetic torque of the motor in Nm, $\dot{\theta}$ is the speed of rotation in RPM and a is the constant to be determined. The nameplate of the machine indicates a nominal voltage of 220 V, a nominal speed of rotation of 1200 RPM and a nominal current of 7.8 A. Deduce the value of the constant a (In the following, we will take the value of $a = 20 \, 10^6 \, Nm \, RPM^2$).

- 5. Draw the mechanical characteristics of C_{elm} with respect to the speed of rotation.
- 6. The motor drives a hoist whose resistive torque is constant: $C_{elm} = 10 Nm$. Deduce the rotation speed.